EMISSION TRENDS IN HEAVY-DUTY TRUCKS IN THE SOUTH COAST AIR BASIN

Gary A. Bishop, Brent G. Schuchmann and Donald H. Stedman
Department of Chemistry and Biochemistry
University of Denver, Denver, CO 80208
www.feat.biochem.du.edu

Wendy Clark
National Renewable Energy Laboratory
Golden, CO 80401

Wei Li and Dean Saito
South Coast Air Quality Management District
Diamond Bar, CA 91765
Acknowledgments

Department of Energy Office of Vehicle Technologies through National Renewable Energy Laboratory

South Coast Air Quality Management District

The California Highway Patrol

TraPac, Inc

Dr. Douglas R. Lawson

University of Denver
Multi-Year Study Objectives

• To obtain On-Road Heavy-Duty Diesel Truck (HDDT) emissions over a five-year period at two locations in the South Coast Air Basin

• To follow HDDT emission changes during this period as new vehicles enter the fleet with even lower emission certified engines

• To compare commercial RSD system with research RSD system
Equipment and Measurements

DU FEAT with single measurement standard deviations

NDIR – CO$_2$
- CO \pm 4 g/kg
- HC \pm 4 g/kg
- %Opacity \pm 0.8%

UV – NO \pm 0.4 g/kg
- NO$_2$ \pm 0.3 g/kg
- NH$_3$ \pm 0.02 g/kg
- SO$_2$ \pm 0.06 g/kg

Speed and Acceleration
License Plate Photo

ESP 4600

NDIR – CO, CO$_2$, HC, Smoke

UV – NO, Smoke
Current Regulations Status

• **EPA and California Engine Emission Standards**
 - PM - 0.01 g/bhp-hr MY 2007+
 - NOx - 0.2 g/bhp-hr MY 2010+

• **San Pedro Bay Ports Clean Air Action Plan**
 Complete! All Class 7 & 8 trucks now meet a 2007 standard

• **CARB Drayage Truck Regulation**
 Complete! All Class 7 & 8 trucks now meet a 2007 standard

• **CARB Statewide Truck and Bus Regulation**
 - 2012-2016 Phase-in most PM requirements
 - 2015-2023 Phase-in NOx requirements
Peralta Weigh Station
EB SR-91/Weir Canyon Rd.
Sept. 24 – 28 2012
2,547 Measurements
Mean MY 2004
5 – 15mph (Accel)

Port of Los Angeles
Water Street Exit
April 30 - May 4 2012
1,746 Measurements
Mean MY 2009.3
0 – 5mph (Accel)
New Cameras This Year

Exhaust Pipe

IR Thermograph

Green ~ 200°C

SCR Urea Tank Detection

Blue Cap = Urea tank
5 Year NO\textsubscript{x} and IR %Opacity Trends

Mean gNO\textsubscript{x}/kg of fuel

NO\textsubscript{2} NO

2008 2009 2010 2012 2004

1995.6 2003.5 2007.9 2009.3

Measurement Year / Location

Peralta Port
2012 Peralta NO\textsubscript{x} Emissions

<table>
<thead>
<tr>
<th>Chassis Model Year / SCR Status</th>
<th>Urea Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-2003</td>
<td>10</td>
</tr>
<tr>
<td>2004-2007</td>
<td>90</td>
</tr>
<tr>
<td>2008-2010</td>
<td>75</td>
</tr>
<tr>
<td>2011+</td>
<td>50</td>
</tr>
<tr>
<td>2011+</td>
<td>25</td>
</tr>
</tbody>
</table>

Data Point 1/99th
Maximum Observed
IR Estimated Exhaust Temperature

- POLA 155° C
 766 Measurements
- Peralta 225° C
 1969 Measurements

Truck Counts

IR Estimated Exhaust Temperature (°C)
SCR Equipped Truck Emissions Comparison

- **CO**
 - Peralta (233 Measurements)
 - POLA (32 Measurements)

- **HC**

- **NH₃**

- **NOₓ**

- **Mean Exhaust Temperature**

g/kg of fuel

IR Exhaust Temperature °C
Stoichiometric LNG Fueled Truck
Ammonia Emissions

Mean gNH₃/kg of fuel

Chassis Model Year

2009
2010
2011
2012

2009

2010

2011

2012
Conclusions

• Mean gNO\textsubscript{x}/kg emissions decreased 18.5% at Peralta and 12% at the Port and smoke emissions at the Port have remained low since 2010.

• Exhaust temperatures are 65 to 70° C higher at Peralta contributing to successful SCR operations and rapidly decreasing NO\textsubscript{x} emissions.

• SCR equipped trucks can have high NO\textsubscript{x} emissions when the equipment is inoperative as observed at the Port.

• NO\textsubscript{2}/NO\textsubscript{x} ratios continue to decrease and the ratios are lower in the newer MY trucks.