A HISTORY OF ON-ROAD EMISSIONS AND EMISSIONS DETERIORATION

www.feat.biochem.du.edu
www.sign.du.edu

March 31, 2004
Donald H. Stedman and Gary A. Bishop
Department of Chemistry and Biochemistry
University of Denver
2101 E. Wesley Ave.
Denver, CO 80208

303 871-2580.. FAX 2587
dstedman@du.edu
Emissions Deterioration

• depends both upon hardware
• and upon human behavior!
Non-US data from IVL (Ake Sjodin) and TRL (Ian McRae)

CO by Model Year

%CO on-road

Model Year

- UK
- Sweden
- USA
- Poly. (USA)
The graph shows the average %CO for Denver over the years of measurement. There are four markers representing different periods:

- 4 yrs (pink squares)
- 3 yrs (blue diamonds)
- 2 yrs (red triangles)
- 1 yrs (black crosses)

The R^2 values for each period are as follows:

- 4 yrs: R^2 = 0.77
- 3 yrs: R^2 = 0.87
- 2 yrs: R^2 = 0.91
- 1 yrs: R^2 = 0.95
Highest emitting 20% of 15 yr old cars; Chicago

<table>
<thead>
<tr>
<th>Year</th>
<th>CO</th>
<th>HCx10</th>
<th>NOx10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- CO: Carbon Monoxide
- HCx10: Hydrocarbon (multiplied by 10)
- NOx10: Nitric Oxide (multiplied by 10)
Average %CO by model year for gasoline LDVs in Gothenburg measured in 1991, 1995, 1998 and 2001

Ake Sjodin IVL 2004
Denver CO Emissions versus Age

% CO

age yrs

1989

2001
Three Measures of Emissions “Deterioration”

- **All gm/kg.yr**
- \(-\frac{dE}{d(MY)}\); **Wrong.**
- \(\frac{dE(MY \ fleet)}{d(age)}\)
 - Right on-road but different from
- \(\frac{dE(\text{individual MY same vehicles})}{d(age)}\)
 - Also right. This is how MOBILE6 does it. The difference is caused because broken vehicles are preferentially removed with increasing age, an effect not in MOBILE6.
normalized data HC offset removed

Normalized to 1990 = 1

CRC Chicago

Model yr

Normalized to 1990 = 1

1.2
1.0
0.8
0.6
0.4
0.2
0.0

CO
HC
NO
Conclusions

- Emissions Deterioration is fascinating.
- I believe that MOBILE6 deterioration is subtly different from on-road because the preferential demise of broken (high emitting) vehicles from older fleets is not in the model.
- Emissions of 1996 model year and newer vehicles are amazingly low.
- The combination of Swedish technology and maintenance remains ahead of the USA and the UK.
- Acknowledge CRC, CARB and others.
Colorado I/M LDGV Odd Model Year CO 1995-2003
(1st Quarter Initials with Wait less than Five Minutes)

Communication from P McClintock, 2004
Are the on-road and IM240 data comparable?

- Yes the deterioration rates are slower than the effect of older model years.
- And no, the 1996 effect is not so obvious and the older fleet have much higher emissions relative to the newer.
- Why? IM240 is registration based, every old car is supposed to be tested. On-road studies are biased by the fact that the vehicles are being driven.
The 1996 Effect

- Galen Fisher of Delphi Automotive told me that the 1996 addition of oxygen sensors well downstream of the exhaust manifold has allowed 1996 and newer vehicles to recalibrate the otherwise unavoidable tendency of the exhaust manifold oxygen sensor to drift towards a rich calibration. I have failed so far to find a literature reference.
M6 prediction test (MY 92 & 93) using Colorado IM240 data (97 and 02)