On-Road Emissions in Asia Measured by Remote Sensing.

- Donald H. Stedman, Gary A. Bishop, University of Denver, Department of Chemistry and Biochemistry, Denver CO 80208

- www.feat.biochem.du.edu
- www.sign.du.edu
Acknowledgements

India Study Sponsor

Ms. K. Easter, Mr. K. Balakrishnam
US Asia Environmental Partnership

Data Collection

Dr. Balraj Bahnot, Director
Automotive Research Association of India
PB 832 Pune, India

Mr. Nitin Manawat, Managing Director
Environmental Systems Products-India
Powai, Mumbai, India

Data Analysis

Dr. Peter McClintock
Applied Analysis
Tiburon, CA, USA
Acknowledgements

1. Ananda P. Mallawatantri Ph. D. - Director, USAEP-Sri Lanka
2. Don S. Jayaweera Ph. D.
3. Gamini Senanayake - Industrial Services Bureau (http://www.isb.lk/)
4. Shinichi Doki – JCAP Promotion Dept. JPEC Chome Japan
5. USAID: SHELL ASIA
7. Nick Tan – Singapore NEA
Web sites

- www.feat.biochem.du.edu DU reports, publications and downloadable data.
- www.sign.du.edu SMART SIGN 24/7 RSD operation and live web camera.
- www.rsdaccuscan.com ESP Accuscan web site.
The on-road advantage

• Large on-road emissions cause poor air quality.
• Remote sensing measures on-road emissions.
• Mass emission per unit of fuel consumed.
Asia results

- On road emissions measured in Asia show large geographic variability and that a few vehicles are responsible for most of the on-road emissions.
- Emission benefits from new technology are everywhere apparent.
- Emission benefits from I/M programs are difficult to discern.
<table>
<thead>
<tr>
<th>Locations & Year</th>
<th>Measurements</th>
<th>Mean gCO/kg</th>
<th>Mean gHC/kg</th>
<th>Mean gNO/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangkok THA, 1993</td>
<td>5,260</td>
<td>264</td>
<td>220</td>
<td>*</td>
</tr>
<tr>
<td>Petrol 2003</td>
<td>8,544</td>
<td>49</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Hong Kong, 1993</td>
<td>5,891</td>
<td>115</td>
<td>20</td>
<td>*</td>
</tr>
<tr>
<td>Petrol 2003</td>
<td>8,544</td>
<td>49</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Katmandu NPL, 1993</td>
<td>11,227</td>
<td>362</td>
<td>189</td>
<td>*</td>
</tr>
<tr>
<td>Kuala Lumpur MAL, 1995</td>
<td>9,478</td>
<td>209</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>Seoul KOR, 1993</td>
<td>3,104</td>
<td>100</td>
<td>14.7</td>
<td>*</td>
</tr>
<tr>
<td>Taipei TWN, 1993</td>
<td>12,062</td>
<td>180</td>
<td>23.4</td>
<td>*</td>
</tr>
<tr>
<td>Singapore 1995/2004</td>
<td>1,681/55,000</td>
<td>148/38</td>
<td>7/4</td>
<td>24/7</td>
</tr>
<tr>
<td>Tokyo JPN, 1995/2004</td>
<td>3,881/5,917</td>
<td>67/33</td>
<td>15/8</td>
<td>*/1.2</td>
</tr>
<tr>
<td>Melbourne AUS, 1992</td>
<td>5,260</td>
<td>149</td>
<td>6.8</td>
<td>24</td>
</tr>
<tr>
<td>New Delhi, India, 2004</td>
<td>10,208</td>
<td>142</td>
<td>48</td>
<td>12</td>
</tr>
<tr>
<td>Sri Lanka, 2004</td>
<td>35,000/6,659/14,944</td>
<td>66/209/16</td>
<td>50/61/17</td>
<td>11/15/7</td>
</tr>
<tr>
<td>Auckland NZ, 2004</td>
<td>34,400</td>
<td>89</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Average USA 1989-92</td>
<td>34,000</td>
<td>113</td>
<td>26</td>
<td>*</td>
</tr>
<tr>
<td>Average USA 2003</td>
<td>63,000</td>
<td>39</td>
<td>3.5</td>
<td>4.9</td>
</tr>
</tbody>
</table>
gm/kg CO 2003/2004

Mass Emission gm/kg of fuel

- **Japan**
- **Singapore**
- **Sri Lanka**
- **New Delhi**
- **Denver**
NO gm/kg autos only

mass emissions gm/kg of fuel

Japan | Singapore | Sri Lanka | New Delhi | Denver

NO gm/kg

top 10%
Asia comparison

• Some locations in Asia, Singapore, Hong Kong and Tokyo in particular, demonstrate on-road emissions comparable to current U.S. on-road fleet averages.
• Most of the emissions come from a few on-road vehicles
• The gross emitters
• Two-stroke vehicles are inevitably in this category
Auto emissions by decile. New Delhi, 2004
A few gross emitters

- It is apparent from this diagram that there is a majority of cars with negligible emissions, while the average is dominated by a very small fraction of the fleet.
Diesel vehicle smoke increases steadily with age.

Petrol vehicles have less smoke but smoke also increases with age.

A smoke reading of 1.0 corresponds to approximately 10 gm of smoke/kg of fuel. BAD!
Singapore RSD - Smoke - Diesel

Average Smoke

- HGV - D
- BUSES - D
- LGV - D
- TAXIS - D
• On-road emissions are not the same as readings from scheduled emission tests.
• On average the two correlate very well. CO, HC, NO and smoke versus IM240 $r^2 > 0.95$ Pokharel et al 2000. CRC poster available at www.feat.biochem.du.edu and Vancouver report.
• On-road gross emitters pulled over by a policeman have more than an 85% chance of failing a California emissions test.